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The Equation

Our original beam equation:

EI
d4w

dx4
+ P2 d

2w

dx2
= q,

where q is the sum of the body force and the surface traction per unit
length.

In dimensionless form this equation becomes

d4w

dx4
+ B2 d

2w

dx2
= 1.

We examine the special case:

d4w

dx4
+ B2 d

2w

dx2
= 0.
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The Equation

For q = 0, we require both the body force q(x) and the applied surface
traction s(x) to be 0.

An example of a real-life situation that would produce this equation is
provided below:

If we are considering a beam on the side wall of a mine, the weight
and deflection are in perpendicular planes and thus q(x) = 0.

If a crack propagates between the beam of interest and its
neighbouring beam a gap may form and separate the beams. As a
result, there will be no applied surface traction giving s(x) = 0.
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The Equation

Finding the general solution to our equation yields

w(x) = A cos(Bx) + C sin(Bx) +
D

B2
x +

F

B2

subject to the following boundary conditions

w(0) = 0,

w(1) = 0,

w ′(0) = 0,

w ′(1) = 0.
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The Equation

Solving our ODE for w(x) without implementing any restrictions on B we
obtain the trivial solution.

In order to produce non-trivial solutions we proceeded as follows: we first
calculate the general solution,

w(x) = A cos(Bx) + C sin(Bx) +
D

B2
x +

F

B2
.

Then, imposing our boundary conditions we obtained a homogeneous
system of equations in the form Hx = 0:

Kedy Mazibuko, Yachna Bharath Thebe Ramanna, Vuyelwa Makibelo, Despina Zoras Charlene Chipoyera, Emile Meote, Tanki MotsepaMISG 2014 January 11, 2014 5 / 13



Solution


1 0 0 B−2

cos(B) sin(B) B−2 B−2

0 B B−2 0
−B sin(B) B cos(B) B−2 0




A
C
D
F

 =


0
0
0
0


We want the determinant of the matrix to be equal to 0. In other words,

det(H) = B5 sin(B)

(
tan

(
B

2

)
−
(
B

2

))
= 0.
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Solution

Case 1: sin(B) = 0

Solving for B gives
B = 2nπ, n ∈ Z.

We substitute this into the matrix H:

1 0 0
1

(2nπ)2

1 0
1

(2nπ)2
1

(2nπ)2

0 2nπ
1

(2nπ)2
0

0 2nπ
1

(2nπ)2
0
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Solution

Solving the resulting matrix system with B = 2nπ gives

w(x) = A(cos(2nπx)− 1),

where A is an arbitrary constant.
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Solution

Plot of the beam deflection
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Solution

The deflection in the beam is symmetric and all local extrema have the
same magnitude.

An observation to be made is that there is a relationship between n and
the number of peaks in the beam’s deflection: n equals the number of
peaks present.
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Solution

Plot of the beam curvature
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Solution

The curvature here is also symmetric, and all local extrema have the same
magnitude. The extremal values are all the points within the beam that
are most likely to experience fracturing.

It can also be noted that the number of extremal values in the curvature
increases when the beam number increases.
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Conclusion

In conclusion, the following important observations can be made from the
results presented

Possible application to rock bursts

Predictions of rock burst burst events for specific B values

The beam will break in multiple places simultaneously

The curvature using this method is finite which is possibly more
accurate
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